An Exploratory Study of Hierarchical Fuzzy Systems Approach in A Recommendation System


  • Tajul Rosli Razak Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau Campus
  • Iman Hazwam Abd Halim Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau Campus
  • Muhammad Nabil Fikri Jamaludin Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau Campus
  • Mohammad Hafiz Ismail Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau Campus
  • Shukor Sanim Mohd Fauzi Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau Campus



Fuzzy Logic Systems, Hierarchical Fuzzy Systems, Recommendation Systems


Recommendation system, also known as a recommender system, is a tool to help the user in providing asuggestion of a specific dilemma. Recently, the interest in developing a recommendation system in manyfields has increased. Fuzzy Logic system (FLSs) is one of the approaches that can be used to model therecommendation systems as it can deal with uncertainty and imprecise information. However, one of thefundamental issues in FLS is the problem of the curse of dimensionality. That is, the number of rules inFLSs is increasing exponentially with the number of input variables. One effective way to overcome thisproblem is by using Hierarchical Fuzzy System (HFSs). This paper aims to explore the use of HFSs forRecommendation system. Specifically, we are interested in exploring and comparing the HFS and FLS forthe Career path recommendation system (CPRS) based on four key criteria, namely topology, the numberof rules, the rules structures and interpretability. The findings suggested that the HFS has advantagesover FLS towards improving the interpretability models, in the context of a recommendation systemexample. This study contributes to providing an insight into the development of interpretable HFSs in theRecommendation systems. Keywords: Fuzzy Logic Systems, Hierarchical Fuzzy Systems, Recommendation Systems


Alonso, J. M., Guillaume, S., & Magdalena, L. (2006). A hierarchical fuzzy system for assessing interpretability of linguistic knowledge bases in classification problems. Proc. PIMU, 348–355.
Alonso, J. M., Magdalena, L., & González-Rodríguez, G. (2009). Looking for a good fuzzy system interpretability index: An experimental approach. Int. J. Approx. Reas., 51(1), 115–134.
Bárdossy, A., Blinowska, A., Kuzmicz, W., Ollitrault, J., Lewandowski, M., Przybylski, A., & Jaworski, Z. (2014). Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators. Artif. Intell. Med, 60(2), 113–121.
Benítez, A. D., & Casillas, J. (2013). Multi-objective genetic learning of serial hierarchical fuzzy systems for large-scale problems. Soft Comput., 17(1), 165–194.
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370.
Gacto, M. J., Alcalá, R., & Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. Inf. Sci., 181(20), 4340–4360.
González, B., Valdez, F., Melin, P., & Prado-Arechiga, G. (2015). Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Expert Systems with Applications, 42(14), 5839–5847.
Ismail, M. H., Razak, T. R., Hashim, M. A., & Ibrahim, A. F. (2015). A Simple Recommender Engine for Matching Final-Year Project Student with Supervisor. Colloquium in Computer and Mathematical Sciences Education (CCMSE 2015).
Jannach, D., & Friedrich, G. (2013). Tutorial: recommender systems. International Joint Conference on Artificial Intelligence Beijing.
Jin, S., & Peng, J. (2015). Towards hierarchical fuzzy rule interpolation. Proc. IEEE 14th Int. Conf. Cognitive Inform. & Cognitive Comput. (ICCI*CC), 267–274.
Jin, Y. (2000). Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst., 8(2), 212–221.
Lee, M.-L., Chung, H.-Y., & Yu, F.-M. (2003). Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst., 138(2), 343–361.
Magdalena, L. (2019). Semantic interpretability in hierarchical fuzzy systems: Creating semantically decouplable hierarchies. Information Sciences, 496, 109–123.
Mamdani, E. H. (1977). Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Trans. on Computers, 12(12), 1182–1191.
Mendel, J. M. (2000). Uncertainty, fuzzy logic, and signal processing. Signal Processing, 80(6), 913–933.
Mendez, J. A., Leon, A., Marrero, A., Gonzalez-Cava, J. M., Reboso, J. S., Estevez, J. I., & Gomez-Gonzalez, J. F. (2018). Improving the anesthetic process by a fuzzy rule based medical decision system. Artificial Intelligence in Medicine, 84, 159–170.
Mikut, R., Jäkel, J., & Gröll, L. (2005). Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets Syst., 150, 179–197.
Moy, J. W., & Lee, S. M. (2002). The career choice of business graduates: Real and perceived differences between smes and mncs. Business Research Centre, School of Business, Hong Kong Baptist University.
Nauck, D. D. (2003). Measuring interpretability in rule-based classification systems. Proc. 12th IEEE Int. Conf. Fuzzy Syst., 196–201.
Nauck, D., & Kruse, R. (1999). Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med, 16(2), 149–169.
Raju, G. V. S., Zhou, J., & Kisner, R. A. (1991). Hierarchical fuzzy control. Int. J. Contr., 54(5), 1201–1261
Razak, T. R., Garibaldi, J. M., Wagner, C., Pourabdollah, A., & Soria, D. (2017). Interpretability indices for hierarchical fuzzy systems. Proc. IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE), 1–6.
Razak, T. R., Garibaldi, J. M., Wagner, C., Pourabdollah, A., & Soria, D. (2018). Interpretability and Complexity of Design in the Creation of Fuzzy Logic Systems — A User Study. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 420–426. IEEE.
Razak, T. R., Hashim, M. A., Noor, N. M., Halim, I. H. A., & Shamsul, N. F. F. (2014). Career path recommendation system for UiTM Perlis students using fuzzy logic. 2014 5th Int. Conf. on Intellig. and Adv. Syst. (ICIAS), 1–5.
Razak, T. R., Mahmod, O., Bakar, M. N. B., Khairul, A. A., & Mansor, R. A. (2012). Mango Grading By Using Fuzzy Image Analysis. Int. Conf. on Agricultural, Environment and Biological Sciences, 18–22.
Razak, T. R., Wahab, R. A., & Ramli, M. H. (2013). Dengue notification system using fuzzy logic. 2013 Int. Conf. on Computer, Control, Inform. and Its App. (IC3INA), 231–235.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. In Recommender Systems Handbook (pp. 1–35).
Sahoo, N., Tripathy, A., & Sharma, P. (2018). Single axis control of ball position in magnetic levitation system using fuzzy logic control. IOP Conference Series: Materials Science and Engineering, 323(1), 012020.
Salgado, P. (2008). Rule generation for hierarchical collaborative fuzzy system. Appl. Math. Model., 32(7), 1159–1178.
Samuel, O. W., Omisore, M. O., & Ojokoh, B. A. (2013). A web based decision support system driven by fuzzy logic for the diagnosis of typhoid fever. Expert Systems with Applications, 40(10), 4164–4171.
Segaran, T. (2007). Programming collective intelligence : building smart web 2.0 applications. O’Reilly Media.
Setnes, M., Babuska, R., & Verbruggen, H. B. (1998). Rule-based modeling: precision and transparency. IEEE Trans. Syst., Man, and Cybern. - Part C, 28(1), 165–169.
Talib, M. A., & Aun, T. K. (2009). Predictors of Career Indecision Among Malaysian Undergraduate Students. European Journal of Social Sciences, 8(2).
Wang, L.-X. (1998). Universal approximation by hierarchical fuzzy systems. Fuzzy Sets Syst., 93(2), 223–230.
Zadeh, L. A. (1965). Fuzzy sets. Inf. and Control, 8(3), 338–353.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci., 8(3), 199–249.
Zhou, S.-M., & Gan, J. Q. (2008). Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets Syst., 159(23), 3091–3131.
Zhou, S.-M., Garibaldi, J. M., John, R. I., & Chiclana, F. (2009). On Constructing Parsimonious Type-2 Fuzzy Logic Systems via Influential Rule Selection. IEEE Trans. Fuzzy Syst., 17(3), 654–667.




Most read articles by the same author(s)