Sustainable Management of the Coastal Water pH of Pulau Tuba Using the Inverse Distance Weighted (IDW) Method

Authors

  • Sharir Aizat Kamaruddin Universiti Teknologi MARA Cawangan Perlis
  • Khairul Naim Abd. Aziz Universiti Teknologi MARA Cawangan Perlis
  • Muhammad Akmal Roslani Universiti Teknologi MARA Cawangan Perlis
  • Zamzila Erdawati Zainol Universiti Teknologi MARA Cawangan Perlis

DOI:

https://doi.org/10.24191/ji.v16i2.428

Keywords:

pH, Pulau Tuba, Inverse Distance Weighted, Interpolation, Accuracy

Abstract

The purpose of this research is to evaluate the precision of the Inverse Distance Weighted (IDW) to estimate and map the coastal water pH for the sustainability of Pulau Tuba, Langkawi, Kedah. 30 sampling points have been set up during two sampling activities in November 2018. The pH meter has been calibrated and lowered to 1 meter below the water surface to measure the reading of pH. The development of the spatial model was developed using the spatial analyst tool available in ArcGIS Software. Several types of statistical analyses were carried to compare the observed and predicted value of pHs such as correlation analysis, regression analysis, and error analysis. Accuracy assessment was carried later after the transformation of a spatial model into a surface map. The research found that the IDW method successfully interpolated the pH readings. The research found that there is a strong positive correlation between the observed and predicted values. For error analysis, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were recorded at 0.033 and 0.044, respectively. After the transformation of the spatial model to the surface map, the accuracy of the map is recorded at 81.25%. The map produced can be used by residents and local government for social and economic development and protection of biodiversity at the coastal water of Pulau Tuba, Langkawi, Kedah.

References

Carle, M. V., Benson, K. G., & Reinhardt, J. F. (2020). Quantifying the benefits of estuarine habitat restoration in the Gulf of Mexico: An introduction to the theme section. Estuaries and Coasts, 43(7), 1680-1691. https://doi.org/10.1007/s12237-020-00807-z

Carstensen, J., Conley, D. J., Almroth-Rosell, E., Asmala, E., Bonsdorff, E., Fleming-Lehtinen, V., Gustafsson, B. G., Gustafsson, C., Heiskanen, A., Janas, U., Norkko, A., Slomp, C., Villnäs, A., Voss, M., & Zilius, M. (2019). Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio, 49(6), 1194-1210. https://doi.org/10.1007/s13280-019-01282-y

Conway, K. W., Whitney, F., Leys, S. P., Barrie, J. V., & Krautter, M. (2017). Sponge reefs of the British Columbia, Canada coast: Impacts of climate change and ocean acidification. Climate Change, Ocean Acidification and Sponges, 429-445. https://doi.org/10.1007/978-3-319-59008-0_10

Deegan, L. A. (2002). Lessons learned: The effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Estuaries, 25(4), 727-742. https://doi.org/10.1007/bf02804902

Eidam, E. F., Sutherland, D. A., Ralston, D. K., Conroy, T., & Dye, B. (2021). Shifting sediment dynamics in the coos Bay Estuary in response to 150 years of modification. Journal of Geophysical Research: Oceans, 126(1). https://doi.org/10.1029/2020jc016771

Hillman, J. R., Stephenson, F., Thrush, S. F., & Lundquist, C. J. (2020). Investigating changes in estuarine ecosystem functioning under future scenarios. Ecological Applications, 30(4). https://doi.org/10.1002/eap.2090

Jin, P., Hutchins, D. A., & Gao, K. (2020). The impacts of ocean acidification on marine food quality and its potential food chain consequences. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.543979

Kamaruddin, S. A., Zainolabdin, S. N., Abd.Aziz, K. N., & Roslani, M. A. (2019). Comparative Study of Regularized and Tension Spline Interpolation Method to Map Surface-Water Salinity of Pulau Tuba, Langkawi, Kedah. Multidisciplinary Informatics Journal, 2(1), 91-97.

Kamaruddin, S. A., Zainolabdin, S. N., Abd.Aziz, K. N., Roslani, M. A., Zohir, N. S., & Al-Bakri, N. Y. (2020). A comparative study of the accuracy of regularized and tension spline interpolation methods to map the surface water temperature of Pulau Tuba, Langkawi, Kedah. Charting the Sustainable Future of ASEAN in Science and Technology, 285-295. doi:10.1007/978-981-15-3434-8_25

Kamaruddin, S. A., Abd Aziz, K. N., Roslani, M. A., Tajam, J., Zaınolabdın, S. N., & Mohd Razman, N. F. (2018). Mapping of salinity level using spline interpolation techniques over the water Of Sungai Merbok, Kedah. Malaysian Journal of Sustainable Environment, 5(2), 114. https://doi.org/10.24191/myse.v5i2.5620

Kamaruddin, S. A., Rusli, H. H., Abd.Aziz, K. N., & Roslani, M. A. (2020). Characteristics and distribution of microplastics in surface sediment of Selat Pulau Tuba, Langkawi, Kedah. Malaysian Journal of Sustainable Environment, 7(2), 133. https://doi.org/10.24191/myse.v7i2.10269

Kelly, J., Scheibling, R., & Balch, T. (2011). Invasion-mediated shifts in the macrobenthic assemblage of a rocky subtidal ecosystem. Marine Ecology Progress Series, 437, 69-78. https://doi.org/10.3354/meps09284

Liu, M., Hou, L., Yang, Y., Zhou, L., & Meadows, M. E. (2020). The case for a critical zone science approach to research on estuarine and coastal wetlands in the Anthropocene. Estuaries and Coasts, 44(4), 911-920. https://doi.org/10.1007/s12237-020-00851-9

McNicholl, C., Koch, M. S., Swarzenski, P. W., Oberhaensli, F. R., Taylor, A., Batista, M. G., & Metian, M. (2020). Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs, 39(6), 1635-1647. https://doi.org/10.1007/s00338-020-01991-x

Niemi, A., Bednaršek, N., Michel, C., Feely, R. A., Williams, W., Azetsu-Scott, K., Walkusz, W., & Reist, J. D. (2021). Biological impact of ocean acidification in the Canadian Arctic: Widespread severe pteropod shell dissolution in Amundsen Gulf. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.600184

Pavoni, E., Crosera, M., Petranich, E., Faganeli, J., Klun, K., Oliveri, P., Covelli, S., & Adami, G. (2021). Distribution, mobility and fate of trace elements in an estuarine system under anthropogenic pressure: The case of the karstic Timavo river (Northern Adriatic Sea, Italy). Estuaries and Coasts. https://doi.org/10.1007/s12237-021-00910-9

Preisner, M., Neverova-Dziopak, E., & Kowalewski, Z. (2020). An analytical review of different approaches to wastewater discharge standards with particular emphasis on nutrients. Environmental Management, 66(4), 694-708. https://doi.org/10.1007/s00267-020-01344-y

Rodrigues, C., & Fidélis, T. (2021). Distinctive features of spatial planning nearby estuaries – An exploratory analysis of water-related rules in municipal master plans in Portugal. Estuarine, Coastal and Shelf Science, 255, 107352. https://doi.org/10.1016/j.ecss.2021.107352

Serrao-Neumann, S., Schuch, G., Cox, M., & Low Choy, D. (2019). Scenario planning for climate change adaptation for natural resource management: Insights from the Australian East Coast cluster. Ecosystem Services, 38, 100967. https://doi.org/10.1016/j.ecoser.2019.100967

Spisla, C., Taucher, J., Bach, L. T., Haunost, M., Boxhammer, T., King, A. L., Jenkins, B. D., Wallace, J. R., Ludwig, A., Meyer, J., Stange, P., Minutolo, F., Lohbeck, K. T., Nauendorf, A., Kalter, V., Lischka, S., Sswat, M., Dörner, I., Ismar-Rebitz, S. M., … Riebesell, U. (2021). Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: A Mesocosm study. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.611157

Watson, D.F., & Philip, G.M. (1985) A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing, 2, 315-327.

Downloads

Published

2021-07-31

Most read articles by the same author(s)